Abstract

The unsteady flow around the monopile under the influence of wave and vibration is studied by a numerical method. Based on Volume of Fluid model and Shear Stress Transport Turbulence model, combined with Intermittent Transition model and dynamic mesh method, wave generation and pile vibration in numerical flume are simulated. The flow field around vibrating monopile in a calm water flume and a wave flume is simulated and the simulation results are compared. The calculation results show that the monopile vibration cause a great disturbance to the unsteady flow around the pile; Under the action of inertia, the vibration of the monopile leads to the reattachment of the shedding vortices; Under the influence of the reattachment vortices, the asymmetry of the vorticity on the side wall of the monopile intensifies; The intensification of the disturbance causes the reduction of the phase lead angle of the bed shear stress on the side of the single pile, and an additional high bed shear stress appears on the side of the monopile. In addition, the vortex structure formed alternately around the monopile during the vibration process leads to the periodic change of the high bed shear stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.