Abstract

The behavior of blood cells and vessel compliance significantly influence hemodynamic parameters, which are closely related to the development of aortic dissection. Here the two-phase non-Newtonian model and the fluid-structure interaction (FSI) method are coupled to simulate blood flow in a patient-specific dissected aorta. Moreover, three-element Windkessel model is applied to reproduce physiological pressure waves. Important hemodynamic indicators, such as the spatial distribution of red blood cells (RBCs) and vessel wall displacement, which greatly influence the hemodynamic characteristics are analyzed. Results show that the proximal false lumen near the entry tear appears to be a vortex zone with a relatively lower volume fraction of RBCs, a low time-averaged wall shear stress (TAWSS) and a high oscillatory shear index (OSI), providing a suitable physical environment for the formation of atherosclerosis. The highest TAWSS is located in the narrow area of the distal true lumen which might cause further dilation. TAWSS distributions in the FSI model and the rigid wall model show similar trend, while there is a significant difference for the OSI distributions. We suggest that an integrated model is essential to simulate blood flow in a more realistic physiological environment with the ultimate aim of guiding clinical treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call