Abstract

• The static pressure distribution conformed with the rules of the eddy field. • The vortex motion near the side wall was intense. • The droplet deformed, stretched, and broken. • The small surface tension and large Weber number promoted droplet breakage. A liquid-liquid cyclone reactor (LLCR) was designed to achieve mixing-reaction-separation integration during isobutane alkylation catalyzed by ionic liquids. However, studies of the droplets deformation and breakage in the kind of reactors are lacking. In this work, the research studied the velocity distribution, pressure field, and turbulent field to investigate the flow pattern and the main energy loss location in the LLCR through the computational fluid dynamics (CFD) method. The simulation results were verified by experiemnts to prove the correctness of the model. Then the deformation and breakage process of droplets, and the influencing factors of droplets breakage were studied by remodeling which was based on the tangential velocity distribution result of the three dimensional model. The three dimensional simulation results clearly showed that the pressure of the LLCR was mainly concentrated in the cone section and fluid turbulent motion was the most intense near the lateral wall. The reconstruct the results of the two dimensional model clearly showed that the deformation and breakage location of droplets were mainly occurred in the velocity boundary layer, while it was difficult to break in the mainstream region. In addition, low surface tension and high Weber number had a positive effect on droplet breakage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.