Abstract

Conditional Source-term Estimation (CSE) is a turbulence-chemistry interaction model similar to CMC, except that the conditional scalars are calculated from unconditional ones using an integral equation. This problem is inherently ill-posed and should be regularised. Recently, an efficient regularisation approach based on Bernstein polynomial expansion was proposed by Mahdipour and Salehi (Combust. Flame, 2022) in an a priori analysis using DNS data. This work implements this approach in a reacting flow solver, and two laboratory-scale turbulent premixed flames are simulated in the Reynolds-Averaged Navier-Stokes (RANS) context. The turbulent intensity in the first flame is low, and the results show that, unlike the conventional CSE approach, the new approach can accurately predict the flamelet conditional averages. Furthermore, the predicted averaged velocity field and major and minor species mass fractions compare favourably with the experimental measurements. The turbulent intensity in the second flame is relatively higher, and the predicted conditional averages should deviate from an unstrained laminar flame solution. The new approach can correctly predict this trend as well as the flame height in this flame. The computational cost of the new CSE approach is also substantially reduced compared to the regular CSE approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call