Abstract

The article presents the results of application of Implicit Large Eddy Simulation method to numerical simulation of under-ice radiatively driven convection, developing in ice-covered water bodies in the moderate zone at the end of freeze-up period. Studies of the radiatively driven convection are of importance because of the role it plays in the temperature regime of lakes and the functioning of lake ecosystems at the end of freeze-up period. The simulation was carried out with the use of the finite-volume software code SINF/Flag-S, developed in SPbPU. The SIMPLEC algorithm with second-order accuracy was used for ad­vancing in time. The discretization of the convective terms was made with the use of QUICK scheme. The results of calculations were used to study variations in the temperature and pulsation velocity components with periodically varying intensity of external energy pumping during the daily cycle. The dissipation of the kinetic energy, background potential energy, and buoyancy flux were evaluated, and changes in these variables during a daily cycle of radiation impact were calculated. The efficiency mixing of water column was evaluated for the period of development of radiatively driven convection in a model domain simulating a small lake covered by ice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call