Abstract

The turbulent flow field in an agitated system with baffles was solved numerically using the standard k-e model, an algebraic Reynolds stress model (ASM) and a differential Reynolds stress model (RSM). The commercial software FLOW3D (CFDS, Harwell Laboratories, 1991) was used for this purpose. The aim of the study was to investigate the influence of the impeller boundary conditions and turbulence models to the agreement with experimentally obtained laser-Doppler anemometry data. The boundary conditions for the impeller discharge used in the numerical calculations were obtained as whole-cycle-ensemble averages from experimental LDA-measurements (Fort et al., 1992). Since measurements of the rate of dissipation of turbulent kinetic energy ( ϵ) was not available the dissipation rate per unit mass in the impeller discharge was estimated from the expression: where k is the turbulent kinetic energy per unit mass and L the macroscale of turbulence in the pitched blade impeller discharge. The macroscale of turbulence (L) in the impeller boundary condition for e was varied in order to optimize the fit of theoretically obtained profiles of turbulent kinetic energy with experimental data. The constant A was fixed to 0.85 according to Wu and Patterson (1989). The optimal values of L for the different turbulence models were compared with the projected height of the impeller blade (h). All three components of the mean velocity were compared with experimental data for the optimal ratio of L/h for six radial cross-sections in the tank. The mean velocity field obtained from simulations showed good agreement with experimental data for all models, with somewhat better agreement for the k — e model. An optimal value of the ratio L/h was found to be equal to 2.0 for the k — ϵ model and 1.3 for the ASM. However, no such optimal value for the RSM could be determined in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call