Abstract

This paper presents a new submarine landslide model based on the non-hydrostatic wave model NHWAVE of Ma et al. (2012). The landslide is modeled as a water–sediment mixture. The dense plume is driven by baroclinic pressure forcing introduced by spatial density variations. The model is validated using laboratory measurements of turbidity currents and of water wave generation by a granular landslide. The model is then utilized to study the dependence of landslide motion and associated tsunami wave generation on parameters including sediment settling velocity, initial depth of the landslide and slide density. Model results show that the slide motion and water waves which it generates are both sensitive to these parameters. The relative tsunamigenic response to rigid and deformable landslides of equal initial geometry and density is also examined. It is found that the wave energy is mostly concentrated on a narrow band of the dominant slide direction for the waves generated by rigid landslides, while directional spreading is more significant for waves generated by deformable landslides. The deformable landslide has larger speed and acceleration at the early stage of landslide, resulting in larger surface waves. The numerical results indicate that the model is capable of reasonably simulating tsunami wave generation by submarine landslides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call