Abstract

This paper presents a numerical method for simulating flow fields in a stochastic porous medium that satisfies locally the Darcy equation, and has each of its hydraulic parameters represented as one realization of a three-dimensional random field. These are generated by using the Turning Bands method. Our ultimate objective is to obtain statistically meaningful solutions in order to check and extend a series of approximate analytical results previously obtained by a spectral perturbation method (L. W. Gelhar and co-workers). We investigate the computational aspects of the problem in relation with stochastic concepts. The difficulty of the numerical problem arises from the random nature of the hydraulic conductivities, which implies that a very large discretized algebraic system must be solved. Indeed, a preliminary evaluation with the aid of scale analysis suggests that, in order to solve meaningful flow problems, the total number of nodes must be of the order of 106. This is due to the requirement that Δxi ≪ gli ≪ Li, where Δxi is the mesh size, λi is a typical correlation scale of the inputs, and Li is the size of the flow domain (i = 1, 2, 3). The optimum strategy for the solution of such a problem is discussed in relation with supercomputer capabilities. Briefly, the proposed discretization method is the seven-point finite differences scheme, and the proposed solution method is iterative, based on prior approximate factorization of the large coefficient matrix. Preliminary results obtained with grids on the order of one hundred thousand nodes are discussed for the case of steady saturated flow with highly variable, random conductivities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call