Abstract

The main objective of the present study is to introduce two novel benchmark solutions namely: two-dimensional three-fluid Rayleigh-Taylor Instability problems, aiming to provide an up-to-date data set and a unique fundamental insight into morphology and hydrodynamic behavior of coupled Rayleigh-Taylor-Kelvin-Helmholtz instability phenomenon. To this end, the Volume-Of-Fluid (VOF) model is adopted to probe the complex configurations and kinetic processes of highly nonlinear multi-fluid flow problems with large topological changes and moving interfaces. However, to improve the performance and accuracy of the classical VOF model and preserve monotonicity for the density and viscosity, a novel high-order bounded advection scheme is first proposed in the context of the Total Variation Diminishing and Normalized Variable Diagram (TVD-NVD) constraints and then is utilized for the discretization of the convection terms in the Navier-Stokes and transport equations. To further increase the accuracy of the numerical simulations, the second-order PLIC-ELVIRA is implemented for the reconstruction of the physical discontinuity between phases and the determination of its curvature. Furthermore, to enhance the consistency and stability of the classical VOF model in handling incompressible multi-fluid flows, a novel semi-iterative pressure-velocity coupling algorithm is constructed by the combination of the standard PISO and SIMPLEC algorithms and is then applied to ensure mass conservation in each grid cell. To demonstrate the versatility and robustness of the proposed model in dealing with the multiphase flows involving large interface deformation and breaking phenomena, a series of canonical test cases such as dam-break over a dry bed with and without stationary obstacle, 2D three-fluid rising bubble, two-fluid and three-fluid Rayleigh-Taylor Instability are adopted. In the last stage, an improved VOF model is applied to solve two new three-fluid Rayleigh-Taylor Instability benchmark problems on a staggered grid system. The results of this study can provide a wide panorama on the improvements of standard VOF model and may be utilized as benchmark solutions for validation of various CFD tools or simply to understand more complex related multi-fluid flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call