Abstract

In this paper a semi-implicit method for three-dimensional circulation in isopycnal co-ordinates is derived and discussed. It is assumed that the flow is hydrostatic and characterized by isopycnal surfaces which can be represented by explicit, single-valued functions. The hydrostatic pressure is determined by using the conjugate gradient method to solve a block pentadiagonal linear system. The horizontal velocities are determined by solving a large set of tridiagonal systems. The stability of the resulting algorithm is shown to be independent of the surface and internal gravity wave speeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.