Abstract
Three-dimensional (3D) component reconnection, where reconnecting field lines are not perfectly anti-parallel, is studied with a 3D magnetohydrodynamic simulation. In particular, we consider the asymmetry of the field strength of the reconnecting field lines. As the asymmetry increases, the generated reconnection jet tends to be parallel to stronger field lines. This is because weaker field lines have higher gas pressure in the initial equilibrium, and hence the gas pressure gradient along the reconnected field lines is generated, which accelerates the field-aligned plasma flow. This mechanism may explain penumbral microjets and other types of jets that are parallel to magnetic field lines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.