Abstract

Nowadays, modeling gas flows in the slip flow regime through microchannels can be achieved using commercial Computational Fluid Dynamics codes. In this regime the Navier-Stokes equations with appropriate boundary conditions are still valid. A simulation procedure has been developed for the modeling of thermal creep flow using ANSYS Fluent®. The implementation of the boundary conditions is achieved by developing User Defined Functions (UDFs) by means of C++ routines. The complete first order velocity slip boundary condition, including the thermal creep effects due to an axial temperature gradient and the effect of the wall curvature, and the temperature jump boundary condition are applied. Motivation of the present work is the development of a simulation tool which will help in the pre-calculations and the preliminary design of a Knudsen micropump consisting of successively connected curved and straight channels and in a second step in the numerical optimization of the pump, in terms of geometrical parameters and operating conditions of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call