Abstract

Anode material seriously influences the characteristics of vacuum arc and further affects the performance of medium-voltage vacuum switches when the interruption current is high. There are many materials used for electrode manufacture, and different materials are selected for different switches. For a pure metal, its performance usually cannot satisfy the actual requirement. To improve switch’s performance, an alloy is usually used as an electrode material. In this paper, thermal processes of six kinds of metal anodes (including pure metal and alloy anodes) are simulated and researched. The physical parameters of the pure metals all come from experiment results directly or are fitted by the experimental data. The physical parameters of the CuCr alloys are derived from Cu and Cr parameters. Two kinds of temperature calculation methods are used, which are called melting and solidification model and equivalent specific heat method, respectively. Simulation results show that W and Mo anodes have the higher temperature than Cu, Cr, CuCr25, and CuCr50 anodes. A pure Cr anode has the largest melting width and highest saturated vapor pressure and evaporation energy. A Cu anode has the biggest melting depth. A W anode has the smallest melting width and depth. Axial temperature gradient is related to the thermal conductivity, and the Cr anode has the largest axial temperature gradient. The thermal characteristics of CuCr25 and CuCr50 anodes are located between the pure Cu and Cr anodes. There are two melting points appearing in the results of CuCr alloys, and between the two melting points, the alloy anodes are in solid–liquid mixture state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call