Abstract
A general numerical simulation model is developed to determine the wind-driven rainfall (WDR) distribution over small-scale topography in space and time. It applies to the redistribution of rainfall by specific perturbed wind-flow patterns that occur over small-scale topography. The model is based on Computational Fluid Dynamics (CFD) and provides a necessary extension of the existing CFD models. It allows a high-resolution determination of the WDR distribution in both space and time. The model is demonstrated by application for a two-dimensional hill and a two-dimensional valley. The calculated distinct rainfall distribution patterns will be investigated and explained and the influence of different parameters will be analyzed in detail. It will be shown that the resulting variations in hydrologically effective rainfall can be very large (e.g. up to 92% in the examples analyzed). Therefore, these variations should be taken into account in e.g. catchment hydrology, runoff and erosion studies and the design of rainfall monitoring networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.