Abstract

AbstractThis paper addresses a hybrid computational procedure for the step‐by‐step calculation of momentum transfer in turbulent boundary layer flows along flat plates. The proposed procedure relies on a modified method of lines wherein transversal discretizations are carried out by a “control volume” being infinitesimal in the streamwise direction and finite in the transversal direction of the fluid flow. Using mixing length theory and coarse intervals in the transversal direction, the resulting system of ordinary differential equations of first order may be readily integrated on a personal computer utilizing a fourth‐order Runge‐Kutta algorithm. In general, a maximum number of sixteen lines is necessary at the trailing edge of the flat plate for a typical calculation. As a consequence, computing time and storage for each run were very small when compared to other finite‐difference methods. Furthermore, to validate the hybrid procedure involving the method of lines and control volumes (MOLCV), comparisons with experimental data have been done in terms of both velocity distributions and local skin friction coefficients. For all cases tested, the proposed methodology predicts the growth of the boundary layer of gases correctly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.