Abstract
Temperature of pressurized water reactor (PWR) core is a key parameter used widely for judging the initiation of emergency operating procedures and severe accident management. Since direct measurement of the fuel cladding surface temperature using thermocouples is not practicable currently, the coolant temperature at the core exit locations is monitored instead. Several experimental researches showed that the CET rise during a loss of coolant accident (LOCA) and its magnitudes were always lower than the actual fuel rod cladding temperature at the same time. In this regard, a theoretical analysis of the transient heat transfer of coolant flow in a PWR core is needed to confirm the findings from the previous experimental works. This paper addresses numerical simulation of the transient boiling-induced multiphase flow through a simplified PWR core model during a LOCA by a commercial computational fluid dynamics (CFD) code. The calculated results are discussed to understand the transient heat transfer mechanism in the core and to provide useful technical information for reactor design and operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.