Abstract
Summary Natural gas hydrate (NGH) is a potential clean energy source and is buried abundantly in seafloor sediments. Waterjet is a key technology involved in both the marine NGH solid fluidization exploitation method and the integrated radial jet drilling and completion method. To improve the efficiency of breaking and extracting NGH through a waterjet, a straight-swirling integrated jet (SSIJ) nozzle is designed based on the convergent-divergent geometry and impeller in this study. With a computational fluid dynamics method, the 3D model of SSIJ is constructed, and the characteristics of velocity field, pressure field, cavitation cloud distribution, and turbulence kinetic energy are analyzed, the results of which are compared with conical jet (CJ), convergent-divergent jet (CDJ), and swirling jet (SJ). Laboratory experiments of gas hydrate-bearing sediments (GHBS) erosion by the four kinds of jets mentioned above are conducted to evaluate the jet erosion performance based on the in-house experimental apparatus for NGH generation and cavitating jet erosion. Results indicate that the SSIJ can significantly enhance the breaking volume and efficiency of waterjet erosion on GHBS compared with the other three methods. The most important driving force for improved efficiency is the 3D velocity, which can induce axial impact stress, radial tensile stress, and circumferential shear stress on the impinged GHBS. Additionally, the insertion of an impeller with the center hole greatly improves the cavitation erosion performance of SSIJ. This paper illustrates the erosion performance of four kinds of waterjets in breaking GHBS and provides preliminary insights into the potential field applications in NGH exploitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.