Abstract
In this paper, the steady-state flow of non-Newtonian fluid in a planar channel with sudden expansion is investigated. The rheological behavior of this media is described by the Herschel-Bulkley model. To determine both steady-state velocity and pressure fields, a numerical algorithm based on the relaxation method and SIMPLE procedure is used.The mathematical problem statement includes three non-dimensional parameters: the Reynolds number, the Bingham number (non-dimensional viscoplasticity parameter), and the power-law index. The results of numerical simulation are obtained in a range of the Reynolds number 1 ≤ Re ≤ 40, Bingham number 0 ≤ Se ≤ 2, and power-law index 0.4 ≤k ≤ 2 (for shear thinning, Newtonian, and shear thickening fluids).The distribution of the main fluid flow characteristics and localization of the two-dimensional region in an expansion zone is presented. The impact of main parameters of the problem on a dead zone distribution in the fluid flow is shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.