Abstract
<abstract><p>The reaction-diffusion process always behaves extremely magically, and any a differential model cannot reveal all of its mechanism. Here we show the patterns behavior can be described well by the fractional reaction-diffusion model (FRDM), which has unique properties that the integer model does not have. Numerical simulation is carried out to elucidate the attractive properties of the fractional (3+1)-dimensional Gray-Scott model, which is to model a chemical reaction with oscillation. The Fourier transform for spatial discretization and fourth-order Runge-Kutta method for time discretization are employed to illustrate the fractal reaction-diffusion process.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.