Abstract
Nowadays, Terahertz (THz) and mm-waves are encountered in many branches such as security, industry and medicine. However, limitations in existing commercial detectors in terms of cost, speed and responsivity prevent this highly advantageous region of the electromagnetic spectrum from being used more efficiently. For these reasons, neon indicator lamps, otherwise known as glow discharge detectors (GDDs), have succeeded in attracting the attention of researchers, not only because they are cheap, but also because of their better performance to other technologies. In these detectors, detection occurs as a result of the interaction of THz/mm-wave with the plasma in the lamp. Although this interaction has been tried to be explained qualitatively using various analytical models, there has been no accurate quantitative explanation about this interaction in the literature. The problem is mainly due to the confined plasma environment which can be difficult to resolve with equilibrium models. As known, GDDs are non-local thermal equilibrium plasma lamps, and such plasmas need to be modeled with a kinetic approach. For that reason, in this study, parallel 1d3v Particle in Cell/Monte Carlo Collision (PIC/MCC) simulation of the plasma in the neon lamp is performed. This simulation will form the basis for the planned investigations into understanding the effects of THz/mm-waves on the plasma. The kinetic approach employed in the simulation allows us to accurately understand and predict the plasma parameters causing the glow discharge in GDDs. The results are checked using experiments performed on home-built discharge glow chambers with similar gap dimensions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.