Abstract

A periodic density reinitialization smoothed particle hydrodynamics (PDRI-SPH) method is proposed to treat the generalized Newtonian free surface flows, which is based on the concept of Taylor series expansion. Meanwhile, an artificial stress term is also presented and tested, for the purpose of eliminating the unphysical phenomenon of particle clustering in fluid stretching. The free surface phenomena of a Cross model droplet impacting and spreading on an inclined rigid plate at low impacting angles are investigated numerically using the proposed PDRI-SPH method. In particular, the effect of the surface inclination and the different regimes of droplet impact, spreading and depositing on an inclined surface, are illustrated; the influence of surface inclination on the tensile instability is also concerned. The numerical results show that the accuracy and the stability of the conventional SPH are all improved by the periodic density reinitialization scheme. All numerical results agree well with the available reference data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.