Abstract
By considering the parametric variation of an individual boron particle in a boron agglomerate, the heat transfer, and the mass transfer between the boron particle agglomerate and the surroundings, an ignition and combustion model of a boron agglomerate is proposed. An experiment of a ramjet combustor using a boron-based slurry fuel is designed and operated for the purpose of validating the ramjet configuration and verifying the combustion of boron particles. Then a mathematical model for simulating a multiphase reacting flow within the combustor of a boron-based slurry fuel ramjet is established. Kerosene droplets and boron particles are injected discretely to the burner flowfield, and their trajectories are traced using the discrete phase model. The influence of the agglomerate size, bypass air mass flow rate, initial boron particle diameter, and boron particle content on the combustion efficiency of the slurry fuels is analyzed in detail. The results show that the combustion efficiency decreases with an increase in the agglomerate radius, initial boron particle diameter, and boron particle content. The combustion efficiency increases with an increase in the mass flow rate of bypass air. If the agglomerate diameter is greater than 100 μm or the bypass air mass flow rate is smaller than 50 g/s, the boron particles cannot be fully burned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.