Abstract

AbstractSnow is one of the most dynamic natural elements on the Earth's surface, and the variations in its distribution in time and space profoundly affect the hydrological cycle, climate system, and ecological evolution as well as other natural processes. Most previous studies have paid less attention to the process determining the distribution of snow on the ground as a result of the effect of nonuniform mountain wind on the trajectories of snow particles. In this paper, we present a numerical study on the falling snow deposition process involving snow particles of mixed grain sizes over complex terrain. A three‐dimensional large‐eddy simulation code was used to predict the wind field by considering the fluid‐solid coupling effect, and the Lagrangian particle tracking method was employed to track the movement of each tracking snow particle. The grid resolution and model parameters were determined by the best fit with the field experiment, and the coupling effect between snow particles and wind field was found to be nonnegligible when the drifting snow occurred. In general, the preferential deposition on a single ridge showed a tendency from windward slope toward leeward slope with the increasing advection, while it was hard to describe the snow distribution over complex terrains with a unified deposition model due to the interaction of surrounding topographies and different atmospheric stabilities, and the particle tracking approach was substantially suitable for this issue. Our study significantly improved the understanding of the evolution of snow distributions at high levels of resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call