Abstract

In our previous research, the hydrodynamic behavior of a two-dimensional (2D) plane fishing net in current was simulated. Based on the research, a model of a three-dimensional (3D) net is established by using the lumped mass method. To verify the validity of the numerical model, model test results by other authors are cited and compared with the numerical results. The simulated results are in good agreement with experimental ones. In this paper, the 3D net model is applied to investigate the effects of structure size ratio (RDH) and mesh type on the 3D net deformation of the gravity cage in current. The numerical results indicate that the decrease of RDH is practically feasible in improving the cage net deformation. With a sinker system the net deformation with diamond mesh is greater than that with square mesh. When the bottom-collar sinker system is applied, with an increase in current velocity, the net deformation with diamond mesh is less than with square mesh. The results of this study provide a better understanding of the hydrodynamic behavior of the gravity cage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.