Abstract

In a magnetic hyperthermia treatment, malignant cancerous cells are ablated by the heat production of magnetic nanoparticles (MNP) under an external magnetic field. This novel approach is a promising tool to eliminate the tumor cells by a higher temperature inside the tumor microenvironment. MNPs are needed inside the tumor microenvironment to increase the heat, and this could be possible with intravenous drug injection. However, tumors with necrosis regions are more resistant to drug penetration, and this can cause inadequate and non-homogeneous temperature distribution in the tumor. Hence, in this study, we used numerical methods to investigate the Spatio-temporal temperature field distribution in the necrotic tumor and its surrounding tissue. To this end, an intravenous bolus injection is used to simulate the effect of systemic drug delivery in tumors with necrosis region. Results show that the temperature field with the necrosis region with 10% of the tumor radius is more prone to higher temperature values. The hypoxia region is affected by the high temperature despite the necrosis region in the tumor. However, a broader necrosis region impedes drug penetration inside the inner layers of tumors, which leads to a lower heat generation by the MNPs. Results also demonstrate that only 15.5% of MNP concentration distributed to the necrosis with 50% of tumor radius, leading a temperature of 42∘C in the necrosis region, which is not sufficient for the tumor ablation. Therefore, the temperature distribution is dependant on the sizes of necrosis regions in tumors, and tumors with a larger necrotic region (over 20% of tumor radius) are challenging to treat with hyperthermia treatment. This study could help the future in vitro and in vivo studies of hyperthermia treatment in necrotic tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call