Abstract
In this work, we investigate the dynamics of a non-local model describing spontaneous cell polarization. It consists in a drift-diffusion equation set in the half-space, with the coupling involving the trace value on the boundary. We characterize the following behaviors in the one-dimensional case: solutions are global if the mass is below the critical mass and they blow up in finite time above the critical mass. The higher-dimensional case is also discussed. The results are reminiscent of the classical Keller–Segel system in double the dimension. In addition, in the one-dimensional case we prove quantitative convergence results using relative entropy techniques. This work is complemented with a more realistic model that takes into account dynamical exchange of molecular content at the boundary. In the one-dimensional case we prove that blow-up is prevented. Furthermore, density converges towards a non trivial stationary configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.