Abstract

To satisfy the increasingly high demands in many applications of microfluidics, the size of the droplet needs accurate control. In this paper, a level-set method provides a useful method for studying the physical mechanism and potential mechanism of two-phase flow. A detailed three-dimensional numerical simulation of microfluidics was carried out to systematically study the generation of micro-droplets and the effective diameter of droplets with different control parameters such as the flow rate ratio, the continuous phase viscosity, the interfacial tension, and the contact angle. The effect of altering the pressure at the x coordinate of the main channel during the droplet formation was analysed. As the simulation results show, the above control parameters have a great influence on the formation of droplets and the size of the droplet. The effective droplet diameter increases when the flow rate ratio and the interfacial tension increase. It decreases when the continuous phase viscosity and the contact angle increase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.