Abstract

The simulation of the effective density of individual gas bubbles in a two-phase melt, consisting of a liquid and gas bubbles, is performed using the virtual model of the thermal unit. Based on the studies, for the first time the theoretically and experimentally grounded mechanism of individual gas bubbles formation in shaped sapphire is proposed. It is shown that the change of the melt flow pattern in crucible affects greatly the bubble density at the crystallization front, and in the crystal. The obtained results allowed reducing the number of individual gas bubbles in sapphire sheets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call