Abstract

The particle/interface problem is numerically analyzed using a phase-field model in thin interface limit. A new double-well potential function in free energy density of the alloy is defined using a dilute solution approximation. With the function, a negative value of double-well potential height is usable and the mesh size restriction is largely relaxed. A pushing force for alloy systems is also introduced so as to relate to the interface energy change caused by the deformation of interface shape. With the pushing and drag forces calculated from the interface shape, the acceleration and velocity of the particle are estimated and the particle movement relative to the interface is analyzed. Using the model, the particle pushing and engulfment behaviors are successfully reproduced for the system of Fe-C alloys and an alumina particle. The critical velocities for the pushing/engulfment transition are determined for the particles with different diameters. The effect of initial carbon content on critical velocity is also examined and discussed in terms of the pushing force.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.