Abstract

This paper focuses on simulating the collision breakage process between the agglomerate and hammer in a hammer crusher by the discrete element method (DEM) as the interaction between particles. This enables us to consider the energy change in the collision breakage process of the hammer. The agglomerate model is built by using the EDEM 2.7 software according to the principle of closest packing in crystallography, while the hammer model is modeled into an assembly of different sizes of spherical particles to make the collision breakage process between the agglomerate and hammer as the one of interrelation of particles. With these models, we mainly investigated collision force, collision impulse, energy breaking agglomerate, and the relationship between the specific breakage energy and agglomerate damage ratio. The collision force is represented as Gaussian function, the collision impulse is represented by the function of the mass ratio of agglomerate to hammer and the product of agglomerate mass and collision velocity, and the relationship between the specific breakage energy and agglomerate damage ratio is represented by exponential function. Finally, it can be seen from this study that, when crushing the agglomerate by hammer impact, it is necessary to increase the specific breakage energy by 1.75 times in order to increase the agglomerate damage ratio from 85% to 90% but 2.13 times in order to increase 95%. The proposed method can be used for the further development and design of the various types of crusher.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.