Abstract
A computational fluid dynamic (CFD) model of the cold gas dynamic spray process is presented. The gas dynamic flow field and particle trajectories within an oval-shaped supersonic nozzle as well as in the immediate surroundings of the nozzle exit, before and after the impact with the target plane, are simulated. Predicted nozzle wall pressure values compare well with experimental data. In addition, predicted particle velocity results at the nozzle exit are in qualitative agreement with those obtained using a side-scatter laser Doppler anemometer (LDA). Details of the pattern of the particle release into the surroundings are visualized in a convenient manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.