Abstract

To further study the failure behavior of the rock-like materials containing intermittent fissures subjected to uniaxial compression, 3D printing technology was adopted to manufacture specimens with prefabricated kinked and straight fissures (K-S fissure). The order of average peak strength was −45° > −90° > +90° > +45°. The influence of different parameters, including the effective length and inclination angle of branch fissure, on the coalescence pattern was discussed. Results showed that two failure modes were observed: Model I represented tensile-shear composite failure in the rock bridge area, while Model II showed non-coalescence occurring. The effective length parameter presented a relatively larger influence than the inclination angle on the failure behavior. Additionally, Model I was discovered to tend to occur in the rock bridge region when the branch fissure turned anticlockwise. Based on numerical simulation using the Realistic Failure Process Analysis (RFPA2D), a quick damage criterion approach was proposed to estimate the coalescence behavior in the rock bridge, which was beneficial to determine coalescence pattern and failure behavior. Based on the curve fitted by the simulation, the coalescence pattern of cracks initiated from pre-existing intermittent fissures occurs in the tensile-shear composite fracture pattern, while non-coalescence occurs in the rock bridge below the curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.