Abstract

Through numerical simulation, the blast-resistant performance of spray polyurea elastomer (SPUA) retrofitted concrete masonry unit (CMU) masonry infill walls under far-range blast loading was studied. From an engineering perspective, the effects of boundary conditions and thickness of a SPUA layer on enhancing the blast resistance of masonry infill walls are discussed, and the blast resistance of SPUA-retrofitted and grouted CMU masonry infill walls are compared. It is concluded that the boundary constraint conditions and the anchorage length of SPUA layer have limited improvement on the blast-resistant performance of the wall; the thickness of SPUA layer can significantly improve the blast-resistant performance of the wall as the blast loading increases. In addition, SPUA retrofitting shows relatively better performance to reinforce masonry infill walls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call