Abstract

Numerical three‐dimensional magnetohydrodynamic models are capable of predicting large‐scale solar wind structures at Earth, provided that appropriate time‐dependent boundary conditions are specified near the Sun. Since knowledge of such conditions is at present insufficient to directly drive the models, various approximations are used. In this paper, we introduce the main features and approximations of a numerical model where (1) the ambient solar wind is derived from coronal models utilizing photospheric magnetic field observations and (2) transient disturbances are derived from geometrical and kinematic fitting of coronagraph observations of coronal mass ejections (CMEs). We have chosen the well‐defined halo‐CME event of 12 May 1997 as our initial event because it is characterized by a relatively quiet solar and interplanetary background into which the ejecta was launched. The numerical simulation has enabled us to predict the arrival of the shock and ejecta and provided us with a global picture of transient disturbance interacting with a moderately fast solar wind stream.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.