Abstract

Basing on the Spallart-Allmaras turbulence model and the real gas equation of state, a numerical model is proposed in this paper to study the mechanism of temperature rise within hydrogen vehicle cylinder during refueling. The model is validated by comparing calculated results with experimental data. With the validated model, the effect of mass filling rate, initial pressure within cylinder and ambient temperature on the maximum temperature rise during refueling are investigated. The study shows that the maximum temperature rise increases with the growth in mass filling rate and ambient temperature, while it descends as the initial pressure increases. Finally, an empirical formula is obtained by fitting numerical results and effective methods for temperature control is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.