Abstract

The temperature distribution of the permeable brick was modeled using CFX software. The influence of magnesia and corundum on thermal shock resistance of non-cement bonded alumina-based permeable brick was investigated. The results indicated that, in the gas blow process, the high temperature regions near the working face of the brick gradually expanded with the increase of the gas flow rate. Therefore the inner part of the brick had the complex and large change of thermal stress. Further experiments demonstrated that thermal shock resistance of alumina-magnesia based castable refractory was better than that of alumina-chrome based castable refractory. With the increase of magnesia amount, the alumina-magnesia based castable refractory had more cycles of heating and water-cooling. When different kinds of corundum were added in the raw materials, the sample with tabular corundum showed the best thermal shock resistance, the one with white fused corundum performed worse and the one with fused dense corundum performed worst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call