Abstract

Abstract The main objective of this study is to implement a reliable FE model of the orthogonal machining of a Nickel based superalloy for the prediction of microstructural changes occurring during the process. A FE numerical model was properly calibrated using an iterative procedure based on the comparison between simulated and experimental results. A user subroutine was implemented in the FE code to simulate the dynamic recrystallization and consequently the grain refinement and hardness variation when orthogonal cutting of Nickel based superalloy is performed. Thus, Zener-Hollomon and Hall-Petch equations were implemented to predict the grain size and micro hardness, respectively. In addition, the depth of the affected layer was predicted using the critical strain equation. The obtained results proved the adequacy of the proposed model showing a good agreement between the simulated and the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call