Abstract

The impingement and ice accretion of supercooled large droplets (SLD) on the aircraft surface is one of the crucial factors threatening flight safety. The movement and impingement of SLD have many unique characteristics that conventional small droplets do not own. Therefore, a large number of experimental and numerical studies about SLD have been carried out to explore its physical properties and simulation method. The distribution and motion characteristics of supercooled large droplet during the process of approaching to the aircraft are first reviewed in this paper. Then the governing equations of SLD under the framework of Lagrangian and Eulerian methods are analyzed and established. The unique phenomena of SLD such as water droplet deformation and breakup, droplet–wall interaction and re-impingement in the literature are analyzed. The research development and results of the droplet–wall interaction phenomenon have been discussed particularly, which is summarized and classified from three aspects: droplet splashing threshold, splashing model and the method of modification of governing equation. Finally, the establishment process and the corresponding modification of the icing model in SLD condition is given, and the related calculation results are exhibited to validate the numerical simulation methods of SLD. Some shortcomings in current research are presented and the aspects needed to be developed further in future studies for the acquisition of more accurate simulated results are also recommended.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.