Abstract

The surface-directed spinodal decomposition (SDSD) of polymer binary mixture with different values of surface potential is numerically simulated in three-dimension (3D) by cell dynamic systems (CDS). Furthermore, the growth laws of the wetting layer are theoretically analyzed by the current equation and the dynamical scaling. The results show that the thickness of the wetting layer increases with the increasing surface potential. The crossover, which is later for larger values of surface potential, appears in the evolution curve of the wetting layer. Before the crossover, the growth law is the surface potential dependant growth law. Subsequently, the growth law is the typical Lifshitz–Slyozov (LS) growth law. The results indicate that the surface potential can result in the mutual transformation between completely wetting and partially wetting for the substrate interface. It can be found that the higher surface potential leads to the faster and stronger transmission of the effect of the substrate on the spinodal decomposition in the bulk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.