Abstract

The central segments of the Xianshuihe-Xiaojiang fault system (CSXXFS), which intersect densely populated areas, have remained seismically quiet without any strong earthquakes of M ≥ 7 for nearly two centuries. As such, conducting a comprehensive seismic hazard assessment of the CSXXFS serves as a crucial component of disaster mitigation efforts. To achieve this, we developed a finite element model that integrates heterogeneous mechanical properties constrained by interseismic deformation to estimate the fault locking depths within the CSXXFS. Subsequently, we performed an analysis of the seismic moment budget and Coulomb stress change to comprehensively assess the seismic hazards in the vicinity of the CSXXFS. Our findings revealed an overall average locking depth of 10 km for the Xianshuihe-Xiaojiang fault system (XXFS) and 15 km for the Daliangshan fault (DLSF). The discrepancy between the seismogenic depth and the fault locking depth indicates the presence of deep creep in certain segments of the CSXXFS. Additionally, historical earthquakes have caused stress modulation, resulting in potential earthquakes being either delayed or advanced in different segments of the CSXXFS. Specifically, the future seismic hazard is delayed in the entire Zemuhe fault (ZMHF), the northern segment of the Anninghe fault (ANHF), the southern section of the Shimian-Yuexi segment of the north Daliangshan fault (NDLSF), and the southernmost part of the south Daliangshan fault (SDLSF). Conversely, the potential earthquake on the Mianning-Xichang segment of the ANHF and the majority of the DLSF have been advanced due to positive earthquake-induced stress. Our estimation of the seismic budget suggests that the ANHF, ZMHF, NDLSF, and SDLSF have the potential to host earthquakes with magnitudes of M 6.9, M 7.3, M 7.4, and M 7.1, respectively. By adopting this integrated seismic hazard analysis, we highlight the necessity of closely evaluating potential risks and implementing appropriate mitigation strategies in this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.