Abstract

Strengthening with epoxy bonded steel plate is one of the most widely used techniques for flexural upgrading of reinforced concrete (RC) beams. However, debonding failure at the plate cut-off zone and or in the vicinity of flexure and shear cracks leads to catastrophic failure of the upgraded beams. This particular failure depends on several factors such as the distance of plate curtailment from the support, plate thickness and the provision of end anchors. Since the conventional beam theory cannot predict the debonding failure of such beams, a finite element model capable of predicting the overall behavior of strengthened beams including different failure modes accurately is developed. This paper presents the formulation of finite elements and material models and simulation results of some RC beams tested for flexural strengthening with epoxy bonded steel plates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.