Abstract
The Navier‐Stokes equations for an unsteady and compressible flow are solved numerically to investigate the flow near the stack of a thermoacoustic refrigerator. The computational domain is a resonator “slice” including the resonator end but not the source. An incoming wave is introduced into the domain using the method of characteristics. Also included in the domain is a stack plate and two heat exchangers. The effects of the acoustic Mach number and geometrical parameters on refrigerator performance is investigated. Of special interest are some nonlinear temperature oscillations, which are not predicted by linear models and are due to acoustic propagation, and coupling between the stack plate and the heat exchangers. It is shown that the maximum heat pumping occurs fo ra stack/heat exchanger separation that is of the order of one particle displacement amplitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.