Abstract

In this study, we focused on a fuel reforming technology by applying ultrafine oxygen bubble as the pretreatment for in-cylinder combustion s. It is assumed that oxygen is dissolved in the droplets in the form of ultrafine bubbles, and released into air when the decane fuel evaporates. A numerical simulation of the spray combustion was conducted using a PSI-CELL model. We changed the oxygen concentration of the droplets, the initial droplet diameter, and the number of injected droplets per unit time to discuss the ignition time and the temperature field. When there is no oxygen in the fuel droplet, most of the flames are diffusion flames. On the other hand, when oxygen exists in the droplets, premixed flames are formed at the upstream edge of the fuel spray. Due to the effects of ultrafine oxygen bubbles, the ignition time is shortened. However, on the condition that there is only a small amount of oxygen in the fuel droplets, as more fuel is supplied by enlarging the droplet diameter or increasing the number of injected droplets per unit time, the ignition time increases. Thus, when discussing ignition time, the balance between evaporated fuel and oxygen in the gas phase is important.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call