Abstract

Warships widely spread numerous chaffs using a blast, which form chaff clouds that create false radar cross-sections to deceive enemy radars. In this study, we established a numerical framework based on a one-way coupling of computational fluid dynamics and discrete element method to simulate the spatiotemporal distribution of chaff clouds for warships in the air. Using the framework, we investigated the effects of wind, initial chaff cartridge angle, and blast pressure on the distribution of chaff clouds. We observed three phases for the chaff cloud diffusion: radial diffusion by the explosion, omnidirectional diffusion by turbulence and collision, and gravity-induced diffusion by the difference in the fall speed. The wind moved the average position of the chaff clouds, and the diffusion due to drag force did not occur. The direction of radial diffusion by the explosion depended on the initial angle of the cartridge, and a more vertical angle led to a wider distribution of the chaffs. As the blast pressure increased, the chaff clouds spread out more widely, but the distribution difference in the direction of gravity was not significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.