Abstract

Vortex structures in subsonic and transonic jets of various initial profiles are numerically simulated. The mathematical models are based on conservative finite difference schemes that approximate conservation laws in the framework of the model of nonviscous perfect gas. The unsteady vortex structures are visualized. Pulsating characteristics of the flow are examined and compared with experimental data. Computations are performed using parallel algorithms implemented on a cluster architecture system. The influence of the parallelization scheme and the number of computing units on the performance of the algorithms is investigated. The approximation errors of real-life computations are estimated using the differential approximation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.