Abstract

This numerical simulation study has been performed to investigate the dynamic characteristics, oscillation characteristics, and sound pressure of direct contact condensation at low steam mass flux. The volume of fluid model, Ffowcs Williams and Hawkings model, and condensation model are used to simulate the acoustic signal, which is produced during the steam injection process. The simulation results are verified by the experimental results to keep the applicability and accuracy of the model. The results show that the acoustic signal is related to the steam flow patterns. The vibration of the bubble volume, caused by the separation of bubbles, is the important factor for the generation of the acoustic signal. When the subcooled temperature is large, the chugging regime appears during the injection process. The sound pressure amplitude of the steam injection process increases significantly, with the increase in subcooled temperature. In the low-frequency region, which is below 10 Hz, the larger the subcooled temperature increases, the greater the sound pressure amplitude becomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call