Abstract

AbstractA two-dimensional numerical model is developed to study the propagation of a solitary wave in the presence of a steady current flow. The numerical model is based on the Reynolds-averaged Navier-Stokes (RANS) equations with a k-e turbulence closure scheme and an internal wave-maker method. To capture the air-water interface, the volume of fluid (VOF) method is used in the numerical simulation. The current flow is initialized by imposing a steady inlet velocity on one computational domain end and a constant pressure outlet on the other end. The desired wave is generated by an internal wave maker. The propagation of a solitary wave traveling with a following/opposing current is simulated. The effects of the current velocity on the solitary-wave motion are investigated. The results show that the solitary wave has a smaller wave height, larger wave width, and higher traveling speed after interacting with a following current. Contrariwise, the solitary wave becomes higher with a smaller wave width and l...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call