Abstract

We performed two-dimensional numerical simulations of solar coronal X-ray jets by solving the resistive magnetohydrodynamic (MHD) equations. The simulations were based on the magnetic reconnection model, in which the plasma of an X-ray jet is accelerated and heated by reconnection between the emerging flux and a pre-existing coronal field. Many observed characteristics of X-ray jets could be successfully reproduced. Morphologically, the two observed types of jets, two-sided-loop type and anemone-jet type, were well reproduced. Here, the two-sided-loop type is a pair of horizontal jets (or loops), which occurs when an emerging flux appears in a quiet region where the coronal field is approximately horizontal. In contrast, the anemone-jet type is a vertical jet, which takes place when an emerging flux appears in a coronal hole where the coronal field is vertical or oblique. Quantitatively, the velocity, temperature, thermal energy, kinetic energy, and other parameters obtained in the simulation are in good agreement with the observations. Furthermore, the simulations reveal new features which might be associated with X-ray jets: (1) A fast-mode MHD shock is produced at the collision site of each reconnection jet with the ambient magnetic field. (2) Reconnection produces a cool jet as well as a hot jet (X-ray jet). The hot and cool jets are adjacent to each other, which is consistent with the observed simultaneous coexistence of X-ray jets and Hα surges in the sun.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.