Abstract

An axisymmetric viscous shock tube simulation code is developed that keeps the shock and the contact discontinuity stationary in suitably constructed moving frames of reference. The flowfield around the discontinuities is represented on fine grids that move with the frames attached to the waves. These moving grids are overset upon a coarse background grid of the entire facility, allowing efficient computation of the main discontinuities as they traverse the tube. Focus is placed upon accurate capture of the influence of wave speeds and viscous effects upon the shock and contact discontinuity as they traverse the tube. The code is extensively validated against experiments ranging from Mach 1.6 to 2.7 in a 26.8-mm-diameter shock tube with argon driver/driven gases and an initial pressure of 66.66 Pa. Agreement within 2% is seen in velocity throughout the tube’s length. Test times are predicted to within 6% across a broad range of test conditions. Unsteady diaphragm opening effects as well as turbulent transition are demonstrated to substantially influence experimental results of the well-known experiments of Duff (“Shock-Tube Performance at Low Initial Pressure,” Physics of Fluids, Vol. 2, No. 2, 1959, pp. 207–216).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.