Abstract

Vortices generated at the open end of a planar shock tube are numerically simulated using the AUSM+ scheme. This scheme is known to have low numerical dissipation and therefore is suitable for capturing unsteady vortex motion. However, this low numerical dissipation can also cause oscillations in the vorticity field. Numerical experiments presented here highlight the effect of numerical dissipation on the simulated vortex, as well as the role played by turbulence models. Two turbulence models – the shear-stress-transport (SST) and its modified version for unsteady flows (SST-SAS) – are employed to observe the effect of including turbulence models in such complex flows where the vortex has an embedded shock.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.